Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Structure‐forming foundation species facilitate consumers by providing habitat and refugia. In return, consumers can benefit foundation species by reducing top‐down pressures and increasing the supply of nutrients. Consumer‐mediated nutrient dynamics (CND) fuel the growth of autotrophic foundation species and generate more habitat for consumers, forming reciprocal feedbacks. Such feedbacks are threatened when foundation species are lost to disturbances, yet testing these interactions requires long‐term studies, which are rare. Here, we experimentally evaluated how disturbance to giant kelp, a marine foundation species, affects (1) CND of the forest animal community and (2) nutrient feedbacks that help sustain forest primary production during extended periods of low nitrate. Our experiment involved removing giant kelp annually during the winter for 10 years at four sites to mimic frequent wave disturbance. We paired temporal changes in the forest community in kelp removal and control plots with estimates of taxon‐specific ammonium excretion rates (reef fishes and macroinvertebrates) and nitrogen (N) demand (giant kelp and understory macroalgae) to determine the effects of disturbance on CND as measured by ammonium excretion, N demand by kelp forest macroalgae, and the percentage of nitrogen demand met by ammonium excretion. We found that disturbance to giant kelp decreased ammonium excretion by 66% over the study, mostly due to declines in fishes. Apart from a few fish species that dominated CND, most reef‐associated consumers were unaffected by disturbance. Disturbance to giant kelp reduced its N demand by 56% but increased that of the understory by 147% due to its increased abundance in the absence of a kelp canopy. Overall, disturbance had little effect on the fraction of N demand of macroalgae met by consumer excretion due to the offsetting responses of giant kelp, understory macroalgae, and consumers to disturbance. Across both disturbance regimes, on average, consumers supported 11%–12% of the N required by all kelp forest macroalgae and 48% of N demand by the understory macroalgae (which are confined to the benthos where most reef‐associated consumers reside). Our findings suggest that CND constitutes a considerable contribution of N required in kelp forests, yet nutrient inputs decrease following reductions in essential habitat perpetuated by frequent disturbances.more » « lessFree, publicly-accessible full text available March 1, 2026
-
This paper presents the development of near-infrared (NIR) fluorescent probes, A and B, engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes A and B exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 (A) and 702 nm (B), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments. This increase is attributed to restricted rotational freedom in the fluorophore and its linkages to rhodamine or 1,8-naphthalic groups. Theoretical modeling suggests nonplanar configurations for both probes, with primary absorptions in the rhodamine and hemicyanine cores (A: 543; B: 536 nm), and additional transitions to 1,8-naphthalic (A: 478 nm) and rhodamine (B: 626 nm) groups. Probe A is also responsive to human serum albumin (HSA), a key biomarker, with fluorescence increasing in HeLa cells as HSA concentrations rise. In contrast, probe B shows no response to HSA, likely due to steric hindrance from its bulky rhodamine group, illustrating a selectivity difference between the probes. Probe B, however, excels in mitochondrial imaging, confirmed through cellular and in vivo studies. In HeLa cells, it tracked viscosity changes following treatment with monensin, nystatin, and lipopolysaccharide (LPS), with fluorescence increasing in a dose-dependent manner. In fruit flies, probe B effectively detected monensin-induced viscosity changes, demonstrating its stability and in vivo applicability. These findings highlight the versatility and sensitivity of probes A and B as tools in biological research, with potential applications in monitoring mitochondrial health, detecting biomarkers like HSA, and investigating mitochondrial dynamics in disease.more » « less
-
Wheelchair users (WCUs) face additional challenges than non-WCU to multi-tasking (i.e. open doors, cook, use a cell-phone) while navigating their environments. While assistive devices have attempted to provide WCUs with mobility solutions that enable multi-tasking capabilities, current devices have been developed without the input of end-users and have proven to be non-usable. More balanced approaches that integrate the end-users’ voices may improve current assistive technology usability trends. This study sought to empathically understand the lived experience of WCUs, their needs towards a mobility device, and their perceptions towards hands-free mobility. Full-time WCUs and care providers participated in semi-structured interviews examining wheelchair use and perceptions towards current and future mobility devices. Thematic analysis was used to analyze interview data. 9 WCUs (aged 32.1 ± 7.0 years; wheelchair experience 17.9 ± 11.6 years) and five care providers (years caring for WCU 3.75 ± 0.96 years) participated in the study. The most common disability type was spinal cord injury (WCUs: n = 3; care providers: n = 3). Qualitative analysis revealed four key themes: (1) Current wheelchair usage, (2) WCU and care provider perspectives, (3) Future wheelchair, and (4) Hands-free wheelchair. Accordingly, participants desire bespoke, light-weight mobility devices that can through tight spaces, access uneven terrain, and free the hands during navigation. This study provides meaningful insight into the needs of WCUs and care providers that assistive technology innovators can use to develop more usable assistive technologies. Amongst study participants, the concept of a hands-free mobility device appears to be usable and desirable.more » « less
-
Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.more » « less
-
The current state of function and design of accessible assistive technology is lacking, evidenced by low usability and high abandonment rates by people with disabilities (PwD). A significant contributing factor to these negative outcomes is a lack of user-centered design or user-opinion in the product development. The Human Performance and Mobility Maker Lab (HPML) at the University of Illinois Urbana-Champaign is a new facility dedicated to developing assistive technology by PwDs. Rather than being excluded from the design and innovation process, PwDs are the primary drivers of innovation at the HPML. The HPML’s the central tenet is ‘Designed by, not designed for’. The purpose of this paper is to explore various assistive technologies developed in the HPML while providing an empathic framework for other research groups to follow in integrating PwDs into the development and design of assistive technology.more » « less
-
CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB’s tetrameric architecture is stabilized by a different set of protein–protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5′ nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor–DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue “hook” that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.more » « less
-
Abstract Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery.more » « less
-
CRISPR-associated transposition systems allow guide RNA–directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo–electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate–bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF 3 . These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications.more » « less
An official website of the United States government
